Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 21(1): 14, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195485

ABSTRACT

Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Toxoplasmosis , Humans , Animals , Cats , Female , Male , Mice , Neuroinflammatory Diseases , Brain Injuries/complications , Brain Injuries, Traumatic/complications , Toxoplasmosis/complications , Brain
2.
Nat Microbiol ; 9(1): 17-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172621

ABSTRACT

Toxoplasma gondii is a single-celled eukaryotic parasite with a considerable host range that must invade the cells of warm-blooded hosts to survive and replicate. The challenges and opportunities that such a strategy represent have been met by the evolution of effectors that are delivered into host cells, counter host defences and co-opt host cell functions for their own purposes. These effectors are delivered in two waves using distinct machinery for each. In this Review, we focus on understanding the architecture of these protein-export systems and how their protein cargo is recognized and selected. We discuss the recent findings on the role that host manipulation has in latent Toxoplasma infections. We also discuss how these recent findings compare to protein export in the related Plasmodium spp. (the causative agent of malaria) and how this can inform our understanding of host manipulation in the larger Apicomplexa phylum and its evolution.


Subject(s)
Plasmodium , Toxoplasma , Toxoplasma/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Vacuoles/metabolism , Plasmodium/metabolism , Cells, Cultured
3.
PLoS Biol ; 21(4): e3002066, 2023 04.
Article in English | MEDLINE | ID: mdl-37053271

ABSTRACT

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Plasmodium falciparum/metabolism , Actins/genetics , Actins/metabolism , Profilins/genetics , Profilins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Malaria, Falciparum/genetics , Erythrocytes/parasitology , Antimalarials/pharmacology
4.
Life Sci Alliance ; 6(6)2023 06.
Article in English | MEDLINE | ID: mdl-36958824

ABSTRACT

The phylum Apicomplexa contains several parasitic species of medical and agricultural importance. The ubiquitination machinery remains, for the most part, uncharacterised in apicomplexan parasites, despite the important roles that it plays in eukaryotic biology. Bioinformatic analysis of the ubiquitination machinery in apicomplexan parasites revealed an expanded ovarian tumour domain-containing (OTU) deubiquitinase (DUB) family in Toxoplasma, potentially reflecting functional importance in apicomplexan parasites. This study presents comprehensive characterisation of Toxoplasma OTU DUBs. AlphaFold-guided structural analysis not only confirmed functional orthologues found across eukaryotes, but also identified apicomplexan-specific enzymes, subsequently enabling discovery of a cryptic OTU DUB in Plasmodium species. Comprehensive biochemical characterisation of 11 Toxoplasma OTU DUBs revealed activity against ubiquitin- and NEDD8-based substrates and revealed ubiquitin linkage preferences for Lys6-, Lys11-, Lys48-, and Lys63-linked chain types. We show that accessory domains in Toxoplasma OTU DUBs impose linkage preferences, and in case of apicomplexan-specific TgOTU9, we discover a cryptic ubiquitin-binding domain that is essential for TgOTU9 activity. Using the auxin-inducible degron (AID) to generate knockdown parasite lines, TgOTUD6B was found to be important for Toxoplasma growth.


Subject(s)
Plasmodium , Toxoplasma , Toxoplasma/genetics , Toxoplasma/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism
5.
J Biol Chem ; 299(3): 103006, 2023 03.
Article in English | MEDLINE | ID: mdl-36775128

ABSTRACT

Cryptosporidium parvum is a zoonotic apicomplexan parasite and a common cause of diarrheal disease worldwide. The development of vaccines to prevent or limit infection remains an important goal for tackling cryptosporidiosis. At present, the only approved vaccine against any apicomplexan parasite targets a conserved adhesin possessing a thrombospondin repeat domain. C. parvum possesses 12 orthologous thrombospondin repeat domain-containing proteins known as CpTSP1-12, though little is known about these potentially important antigens. Here, we explore the architecture and conservation of the CpTSP protein family, as well as their abundance at the protein level within the sporozoite stage of the life cycle. We examine the glycosylation states of these proteins using a combination of glycopeptide enrichment techniques to demonstrate that these proteins are modified with C-, O-, and N-linked glycans. Using expansion microscopy, and an antibody against the C-linked mannose that is unique to the CpTSP protein family within C. parvum, we show that these proteins are found both on the cell surface and in structures that resemble the secretory pathway of C. parvum sporozoites. Finally, we generated a polyclonal antibody against CpTSP1 to show that it is found at the cell surface and within micronemes, in a pattern reminiscent of other apicomplexan motility-associated adhesins, and is present both in sporozoites and meronts. This work sheds new light on an understudied family of C. parvum proteins that are likely to be important to both parasite biology and the development of vaccines against cryptosporidiosis.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Humans , Cryptosporidium parvum/metabolism , Cryptosporidiosis/parasitology , Cryptosporidiosis/prevention & control , Glycosylation , Cryptosporidium/metabolism , Protozoan Proteins/chemistry , Sporozoites , Thrombospondins/metabolism
6.
Trends Parasitol ; 38(10): 826-828, 2022 10.
Article in English | MEDLINE | ID: mdl-35973902

ABSTRACT

Forward genetic screens are invaluable in describing gene function. CRISPR has reinvigorated phenotypic screens in Toxoplasma - a model apicomplexan parasite. Two recent papers by Smith et al. and Li et al. take the next big leap in performing forward genetic screens in Toxoplasma by combining conditional gene regulation with CRISPR.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Toxoplasma , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genetic Testing , Toxoplasma/genetics
7.
PLoS Biol ; 20(5): e3001638, 2022 05.
Article in English | MEDLINE | ID: mdl-35552541

ABSTRACT

Cryptosporidium is a leading cause of death from childhood diarrhea, but its biology is poorly understood. A recent study in PLOS Biology reveals hitherto unknown aspects of the parasite's life cycle that may lead to improvements in ex vivo culture.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Cryptosporidium/genetics , Female , Germ Cells , Life Cycle Stages , Male
8.
Cell Host Microbe ; 30(2): 232-247.e6, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34921775

ABSTRACT

Toxoplasma gondii develops a latent infection in the muscle and central nervous system that acts as a reservoir for acute-stage reactivation in vulnerable patients. Little is understood about how parasites manipulate host cells during latent infection and the impact this has on survival. We show that bradyzoites impart a unique transcriptional signature on infected host cells. Many of these transcriptional changes rely on protein export and result in the suppression of type I interferon (IFN) and IFNγ signaling more so than in acute stages. Loss of the protein export component, MYR1, abrogates transcriptional remodeling and prevents suppression of IFN signaling. Among the exported proteins, the inhibitor of STAT1 transcription (IST) plays a key role in limiting IFNγ signaling in bradyzoites. Furthermore, bradyzoite protein export protects host cells from IFNγ-mediated cell death, even when export is restricted to latent stages. These findings highlight the functional importance of host manipulation in Toxoplasma's bradyzoite stages.


Subject(s)
Toxoplasma , Cell Death , Humans , Interferon-gamma/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/metabolism
9.
Front Mol Neurosci ; 15: 1079097, 2022.
Article in English | MEDLINE | ID: mdl-36683847

ABSTRACT

Introduction: Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI), and neuroinflammation is implicated in increased seizure susceptibility and epileptogenesis. However, how common clinical factors, such as infection, may modify neuroinflammation and PTE development has been understudied. The neurotropic parasite, Toxoplasma gondii (T. gondii) incurably infects one-third of the world's population. Thus, many TBI patients have a pre-existing T. gondii infection at the time of injury. T. gondii infection results in chronic low-grade inflammation and altered signaling pathways within the brain, and preliminary clinical evidence suggest that it may be a risk factor for epilepsy. Despite this, no studies have considered how a pre-existing T. gondii infection may alter the development of PTE. Methods: This study aimed to provide insight into this knowledge gap by assessing how a pre-existing T. gondii infection alters susceptibility to, and severity of, pentylenetetrazol (PTZ)-induced seizures (i.e., a surrogate marker of epileptogenesis/PTE) at a chronic stage of TBI recovery. We hypothesized that T. gondii will increase the likelihood and severity of seizures following PTZ administration, and that this would occur in the presence of intensified neuroinflammation. To test this, 6-week old male and female C57BL/6 Jax mice were intraperitoneally injected with 50,000 T. gondii tachyzoites or with the PBS vehicle only. At 12-weeks old, mice either received a severe TBI via controlled cortical impact or sham injury. At 18-weeks post-injury, mice were administered 40 mg/kg PTZ and video-recorded for evaluation of seizure susceptibility. Fresh cortical tissue was then collected for gene expression analyses. Results: Although no synergistic effects were evident between infection and TBI, chronic T. gondii infection alone had robust effects on the PTZ-seizure response and gene expression of markers related to inflammatory, oxidative stress, and glutamatergic pathways. In addition to this, females were more susceptible to PTZ-induced seizures than males. While TBI did not impact PTZ responses, injury effects were evident at the molecular level. Discussion: Our data suggests that a pre-existing T. gondii infection is an important modifier of seizure susceptibility independent of brain injury, and considerable attention should be directed toward delineating the mechanisms underlying this pro-epileptogenic factor.

10.
J Cell Sci ; 134(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34523684

ABSTRACT

The voltage-dependent anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC protein, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to mitochondria. Further, depletion of VDAC resulted in significant morphological changes in the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Toxoplasma , Animals , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , Protein Transport , Toxoplasma/genetics , Toxoplasma/metabolism , Voltage-Dependent Anion Channels/genetics , Voltage-Dependent Anion Channels/metabolism
11.
Sci Immunol ; 6(58)2021 04 02.
Article in English | MEDLINE | ID: mdl-33811060

ABSTRACT

The functional diversification of dendritic cells (DCs) is a key step in establishing protective immune responses. Despite the importance of DC lineage diversity, its genetic basis is not fully understood. The transcription factor DC-SCRIPT is expressed in conventional DCs (cDCs) and their committed bone marrow progenitors but not in plasmacytoid DCs (pDCs). We show that mice lacking DC-SCRIPT displayed substantially impaired development of IRF8 (interferon regulatory factor 8)-dependent cDC1, whereas cDC2 numbers increased marginally. The residual DC-SCRIPT-deficient cDC1s had impaired capacity to capture and present cell-associated antigens and to secrete IL-12p40, two functional hallmarks of this population. Genome-wide mapping of DC-SCRIPT binding and gene expression analyses revealed a key role for DC-SCRIPT in maintaining cDC1 identity via the direct regulation of cDC1 signature genes, including Irf8 Our study reveals DC-SCRIPT to be a critical component of the gene regulatory program shaping the functional attributes of cDC1s.


Subject(s)
Cell Differentiation/genetics , DNA-Binding Proteins/metabolism , Dendritic Cells/immunology , Interferon Regulatory Factors/genetics , Nuclear Proteins/metabolism , Toxoplasmosis/immunology , Transcription Factors/metabolism , Animals , Bone Marrow Transplantation , Cell Differentiation/immunology , Cells, Cultured , Cross-Priming/genetics , DNA-Binding Proteins/genetics , Dendritic Cells/metabolism , Disease Models, Animal , Female , Fibroblasts , Gene Expression Regulation/immunology , Humans , Interferon Regulatory Factors/metabolism , Interleukin-12/metabolism , Male , Mice , Mice, Knockout , Nuclear Proteins/genetics , Toxoplasma/immunology , Toxoplasmosis/blood , Toxoplasmosis/parasitology , Transcription Factors/genetics , Transplantation Chimera
12.
mSystems ; 6(2)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33688018

ABSTRACT

Alternative splicing is a widespread phenomenon in metazoans by which single genes are able to produce multiple isoforms of the gene product. However, this has been poorly characterized in apicomplexans, a major phylum of some of the most important global parasites. Efforts have been hampered by atypical transcriptomic features, such as the high AU content of Plasmodium RNA, but also the limitations of short-read sequencing in deciphering complex splicing events. In this study, we utilized the long read direct RNA sequencing platform developed by Oxford Nanopore Technologies to survey the alternative splicing landscape of Toxoplasma gondii and Plasmodium falciparum We find that while native RNA sequencing has a reduced throughput, it allows us to obtain full-length or nearly full-length transcripts with comparable quantification to Illumina sequencing. By comparing these data with available gene models, we find widespread alternative splicing, particularly intron retention, in these parasites. Most of these transcripts contain premature stop codons, suggesting that in these parasites, alternative splicing represents a pathway to transcriptomic diversity, rather than expanding proteomic diversity. Moreover, alternative splicing rates are comparable between parasites, suggesting a shared splicing machinery, despite notable transcriptomic differences between the parasites. This study highlights a strategy in using long-read sequencing to understand splicing events at the whole-transcript level and has implications in the future interpretation of transcriptome sequencing studies.IMPORTANCE We have used a novel nanopore sequencing technology to directly analyze parasite transcriptomes. The very long reads of this technology reveal the full-length genes of the parasites that cause malaria and toxoplasmosis. Gene transcripts must be processed in a process called splicing before they can be translated to protein. Our analysis reveals that these parasites very frequently only partially process their gene products, in a manner that departs dramatically from their human hosts.

13.
Mol Microbiol ; 115(5): 916-929, 2021 05.
Article in English | MEDLINE | ID: mdl-33278047

ABSTRACT

Toxoplasma and other apicomplexan parasites undergo a unique form of cellular locomotion referred to as "gliding motility." Gliding motility is crucial for parasite survival as it powers tissue dissemination, host cell invasion and egress. Distinct environmental cues lead to activation of gliding motility and have become a prominent focus of recent investigation. Progress has been made toward understanding what environmental cues are sensed and how these signals are transduced in order to regulate the machinery and cellular events powering gliding motility. In this review, we will discuss new findings and integrate these into our current understanding to propose a model of how environmental sensing is achieved to regulate gliding motility in Toxoplasma. Collectively, these findings also have implications for the understanding of gliding motility across Apicomplexa more broadly.


Subject(s)
Toxoplasma/cytology , Toxoplasma/metabolism , Toxoplasmosis/parasitology , Animals , Cell Movement , Ecosystem , Humans , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/genetics
14.
Cell ; 183(3): 636-649.e18, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33031745

ABSTRACT

Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Nucleotidyltransferases/metabolism , Alarmins/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cytoplasm/metabolism , Disease Models, Animal , Disease Progression , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/metabolism , Interferon Type I/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , NF-kappa B/metabolism , Nerve Degeneration/pathology , Phosphotransferases (Alcohol Group Acceptor) , Protein Subunits/metabolism , Signal Transduction
15.
J Neuroinflammation ; 17(1): 222, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32711529

ABSTRACT

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world's population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.


Subject(s)
Brain Injuries, Traumatic/microbiology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Toxoplasmosis/complications , Toxoplasmosis/pathology , Animals , Brain/microbiology , Brain/pathology , Cats , Humans , Inflammation , Toxoplasma
16.
Cell Rep ; 31(4): 107573, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32348768

ABSTRACT

Germline epigenetic factors influence transgenerational inheritance of behavioral traits upon changes in experience and environment. Immune activation due to infection can also modulate brain function, but whether this experience can be passed down to offspring remains unknown. Here, we show that infection of the male lineage with the common human parasite Toxoplasma results in transgenerational behavioral changes in offspring in a sex-dependent manner. Small RNA sequencing of sperm reveals significant transcriptional differences of infected animals compared to controls. Zygote microinjection of total small RNA from sperm of infected mice partially recapitulates the behavioral phenotype of naturally born offspring, suggesting an epigenetic mechanism of behavioral inheritance in the first generation. Our results demonstrate that sperm epigenetic factors can contribute to intergenerational inheritance of behavioral changes after pathogenic infection, which could have major public health implications.


Subject(s)
Behavior, Animal/physiology , Epigenomics/methods , Infections/complications , RNA/metabolism , Spermatozoa/metabolism , Toxoplasmosis/physiopathology , Animals , Disease Models, Animal , Male , Mice
17.
Methods Mol Biol ; 2071: 435-452, 2020.
Article in English | MEDLINE | ID: mdl-31758465

ABSTRACT

This protocol describes the use of 13C-stable isotope labeling, combined with metabolite profiling, to investigate the metabolism of the tachyzoite stage of the protozoan parasite Toxoplasma gondii. T. gondii tachyzoites can infect any nucleated cell in their vertebrate (including human) hosts, and utilize a range of carbon sources that freely permeate across the limiting membrane of the specialized vacuole within which they proliferate. Methods for cultivating tachyzoites in human foreskin fibroblasts and metabolically labeling intracellular and naturally egressed tachyzoites with a range of 13C-labeled carbon sources are described. Parasites are harvested and purified from host metabolites, with rapid metabolic quenching and 13C-enrichment in intracellular polar metabolites quantified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The mass isotopomer distribution of key metabolites is determined using DExSI software. This method can be used to measure perturbations in parasite metabolism induced by drug inhibition or genetic manipulation of enzyme levels and is broadly applicable to other cultured or intracellular parasite stages.


Subject(s)
Toxoplasma/metabolism , Toxoplasma/pathogenicity , Animals , Chromatography, Liquid , Fibroblasts/parasitology , Foreskin/cytology , Gas Chromatography-Mass Spectrometry , Humans , Male , Mass Spectrometry , Metabolomics , Software , Toxoplasmosis
18.
mBio ; 10(5)2019 10 08.
Article in English | MEDLINE | ID: mdl-31594816

ABSTRACT

Understanding the mechanisms behind host cell invasion by Plasmodium falciparum remains a major hurdle to developing antimalarial therapeutics that target the asexual cycle and the symptomatic stage of malaria. Host cell entry is enabled by a multitude of precisely timed and tightly regulated receptor-ligand interactions. Cyclic nucleotide signaling has been implicated in regulating parasite invasion, and an important downstream effector of the cAMP-signaling pathway is protein kinase A (PKA), a cAMP-dependent protein kinase. There is increasing evidence that P. falciparum PKA (PfPKA) is responsible for phosphorylation of the cytoplasmic domain of P. falciparum apical membrane antigen 1 (PfAMA1) at Ser610, a cAMP-dependent event that is crucial for successful parasite invasion. In the present study, CRISPR-Cas9 and conditional gene deletion (dimerizable cre) technologies were implemented to generate a P. falciparum parasite line in which expression of the catalytic subunit of PfPKA (PfPKAc) is under conditional control, demonstrating highly efficient dimerizable Cre recombinase (DiCre)-mediated gene excision and complete knockdown of protein expression. Parasites lacking PfPKAc show severely reduced growth after one intraerythrocytic growth cycle and are deficient in host cell invasion, as highlighted by live-imaging experiments. Furthermore, PfPKAc-deficient parasites are unable to phosphorylate PfAMA1 at Ser610. This work not only identifies an essential role for PfPKAc in the P. falciparum asexual life cycle but also confirms that PfPKAc is the kinase responsible for phosphorylating PfAMA1 Ser610.IMPORTANCE Malaria continues to present a major global health burden, particularly in low-resource countries. Plasmodium falciparum, the parasite responsible for the most severe form of malaria, causes disease through rapid and repeated rounds of invasion and replication within red blood cells. Invasion into red blood cells is essential for P. falciparum survival, and the molecular events mediating this process have gained much attention as potential therapeutic targets. With no effective vaccine available, and with the emergence of resistance to antimalarials, there is an urgent need for the development of new therapeutics. Our research has used genetic techniques to provide evidence of an essential protein kinase involved in P. falciparum invasion. Our work adds to the current understanding of parasite signaling processes required for invasion, highlighting PKA as a potential drug target to inhibit invasion for the treatment of malaria.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Endocytosis , Erythrocytes/parasitology , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , Antigens, Protozoan/metabolism , Catalytic Domain , Cyclic AMP-Dependent Protein Kinases/genetics , Humans , Membrane Proteins/metabolism , Phosphorylation , Protein Processing, Post-Translational
19.
J Biol Chem ; 294(22): 8959-8972, 2019 05 31.
Article in English | MEDLINE | ID: mdl-30992368

ABSTRACT

Protozoan parasites of the phylum Apicomplexa actively move through tissue to initiate and perpetuate infection. The regulation of parasite motility relies on cyclic nucleotide-dependent kinases, but how these kinases are activated remains unknown. Here, using an array of biochemical and cell biology approaches, we show that the apicomplexan parasite Toxoplasma gondii expresses a large guanylate cyclase (TgGC) protein, which contains several upstream ATPase transporter-like domains. We show that TgGC has a dynamic localization, being concentrated at the apical tip in extracellular parasites, which then relocates to a more cytosolic distribution during intracellular replication. Conditional TgGC knockdown revealed that this protein is essential for acute-stage tachyzoite growth, as TgGC-deficient parasites were defective in motility, host cell attachment, invasion, and subsequent host cell egress. We show that TgGC is critical for a rapid rise in cytosolic [Ca2+] and for secretion of microneme organelles upon stimulation with a cGMP agonist, but these deficiencies can be bypassed by direct activation of signaling by a Ca2+ ionophore. Furthermore, we found that TgGC is required for transducing changes in extracellular pH and [K+] to activate cytosolic [Ca2+] flux. Together, the results of our work implicate TgGC as a putative signal transducer that activates Ca2+ signaling and motility in Toxoplasma.


Subject(s)
Adenosine Triphosphatases/metabolism , Calcium Signaling , Guanylate Cyclase/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Adenosine Triphosphatases/genetics , Calcium/metabolism , Calcium Ionophores/pharmacology , Calcium Signaling/drug effects , Cyclic GMP/metabolism , Cytosol/metabolism , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/genetics , Hydrogen-Ion Concentration , Oligonucleotides, Antisense/metabolism , Potassium/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Toxoplasma/growth & development
20.
Brain Behav Immun ; 80: 88-108, 2019 08.
Article in English | MEDLINE | ID: mdl-30807837

ABSTRACT

Toxoplasma gondii (T. gondii) is a neurotropic parasite that is associated with various neuropsychiatric disorders. Rodents infected with T. gondii display a plethora of behavioural alterations, and Toxoplasma infection in humans has been strongly associated with disorders such as schizophrenia, in which impaired social behaviour is an important feature. Elucidating changes at the cellular level relevant to neuropsychiatric conditions can lead to effective therapies. Here, we compare changes in behaviour during an acute and chronic T. gondii infection in female mice. Further, we notice that during chronic phase of infection, mice display impaired sociability when exposed to a novel conspecific. Also, we show that T. gondii infected mice display impaired short-term social recognition memory. However, object recognition memory remains intact. Using c-Fos as a marker of neuronal activity, we show that infection leads to an impairment in neuronal activation in the medial prefrontal cortex, hippocampus as well as the amygdala when mice are exposed to a social environment and a change in functional connectivity between these regions. We found changes in synaptic proteins that play a role in the process of neuronal activation such as synaptophysin, PSD-95 and changes in downstream substrates of cell activity such as cyclic AMP, phospho-CREB and BDNF. Our results point towards an imbalance in neuronal activity that can lead to a wider range of neuropsychiatric problems upon T. gondii infection.


Subject(s)
Cognition/physiology , Neurons/metabolism , Toxoplasmosis/psychology , Amygdala/metabolism , Animals , Behavior, Animal/physiology , Brain/metabolism , Disease Models, Animal , Female , Hippocampus/metabolism , Memory, Short-Term/physiology , Mice , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Social Behavior , Sulfadiazine/pharmacology , Toxoplasma/metabolism , Toxoplasma/pathogenicity , Toxoplasmosis/metabolism , Toxoplasmosis, Animal/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...